DataScientist: Tanggung jawab, keahlian, dan kisaran gaji 2022. Meski nampak memiliki nama yang serupa, kedua jenis perkerjaan ini ternyata tetap memiliki perbedaan. Data Scientist memproses data menggunakan beberbagai cara dan algoritma untuk menemukan solusi, sedangkan Data Analyst bertanggung jawab dalam menghasilkan laporan hasil
DataAnalyst. Data Scientist. Data Engineer. Secara umum, seorang Data Analyst akan mengambil atau mengumpulkan data, mengaturnya dan menggunakannya untuk mendapatkan suatu kesimpulan sesuai dengan proyek yang sedang diamati, seperti penjualan, inventaris, atau media sosial.
Meskipunsama-sama berhubungan dengan data, baik Data Engineer, Data Scientist, dan Data Analyst sebenarnya memiliki perbedaan yang cukup signifikan. Ketiga profesi ini memiliki peranan dan tanggung jawabnya masing-masing. Mari kita jabarkan satu per satu lingkup pekerjaan antara Data Engineer, Data Scientist, dan Data Analyst. 1. Data Engineer
KuasaiSkill Data Analyst untuk Mulai Berkarir di Bidang Data Berkarir Data Analyst, Data Scientist dan Data Engineer atau profesi di bidang data harus di barengi dengan belajar secara konsisten. Tentukan jalan karirmu mau menjadi apa.
Seseorangyang menganalisis dan menafsirkan kumpulan data yang kompleks. Mulai dari pengumpulan, mengolah, dan menganalisis data dalam jumlah besar. Data Scientist adalah orang yang bertugas mengolah data dari Data Engineer dan melihat apakah ada peluang bisnis baru dari data yang dikumpulkan.
DataAnalyst dan Data Scientist seringkali dianggap serupa karena keduanya bekerja secara intensif dengan angka dan data, namun sebenarnya keduanya berbeda.Pada bagian ini, kita akan mengeksplorasi lebih dalam mengenai perbedaan profesi Data Analyst dan Data Scientist.Apa itu Data Analyst?Dalam kesehariannya, data analyst menggunakan statistical tools untuk melihat tren data, mengidentifikasi
Apasih perbedaan Data Analyst, Data Scientist, dan Data Engineer? 1. Data Analyst (Analis Data) Seorang Analis Data adalah seseorang yang berkutat pada dunia analisis. Proses analisis data melakukan ekstraksi informasi dari dalam suatu kolam data. Seorang data analis melakukan ekstraksi informasi melalui beragam metodologi, seperti pembersihan
Disitus pencari kerja Kalibrr per September 2021, terdapat 570 lowongan dengan kata kunci data engineer dan data scientist sebanyak 471 lowongan. Kedua posisi ini tidak hanya mencakup lowongan pekerjaan di Indonesia saja. Hal ini menunjukkan kebutuhan dan permintaan yang sangat tinggi akan talenta yang ahli di bidang Big Data.
BgPI8. Di era digitalisasi seperti sekarang, internet digunakan dalam berbagai aspek kehidupan. Kemudahan ini mendorong informasi lebih luas dan cepat, sehingga tidak sulit untuk menemukan ide baru. Baik itu inovasi atau strategi dalam bidang bisnis sampai industri. Teknologi juga memunculkan banyak profesi baru, contohnya di bidang data. Tahukah Anda apa perbedaan data scientist, data engineer dan data analyst? Saat ini data sangat dibutuhkan sebagai bentuk validasi dari representasi sebuah bidang. Misalnya saja pada bidang pemerintahan, pendidikan, industri dan bidang lainnya. Data ini nantinya akan dikumpulkan, diolah dan dianalisis oleh ahli di bidangnya. Biasanya ahli-ahli tersebut dikenal dengan nama data analyst, data scientist, dan data engineer. Pernahkah Anda mendengar ketiga nama profesi di atas? Biasanya profesi ini lazim ada pada start up dan perusahaan. Lalu, apa sebenarnya data analyst, data scientist, dan data engineer? Apa saja bidang keahlian diantara ketiga profesi tersebut? Seringkali dibilang mirip bagaimana perbedaan antara data analyst, data scientist, dan data engineer? Agar lebih mudah memahami ketiga profesi populer ini, sudah kami rangkum penjelasannya untuk Anda. Yuk simak selengkapnya dibawah ini! Daftar Isi1 Apa itu Data Analyst, Data Scientist, dan Data Engineer? Data Data Data engineer2 Bidang Keahlian Data Analyst, Data Scientist, dan Data Data Data Data engineer3 Perbedaan Antara Data Analyst, Data Scientist, dan Data Data Data Data engineer4 Penutup Apa itu Data Analyst, Data Scientist, dan Data Engineer? Secara umum, jika dilihat lebih mendalam ketiga ahli data ini memiliki definisi yang hampir sama yaitu sama-sama mengolah data. Namun spesifikasi dari outputnya saja yang berbeda. Sebelum masuk pada bidang keahlian, ketahui definisi dari masing-masing ahli data dari data analyst, data scientist, dan data engineer sebagai berikut Data analyst Seseorang yang bertugas untuk mengolah, menguji dan menafsirkan dari data yang sudah dikumpulkan, selanjutnya data ini akan menghasilkan visualisasi dalam bentuk yang beragam. Biasanya seorang data analyst lebih sering menggunakan bahasa pemrograman untuk memecahkan masalah yang terjadi pada sebuah bisnis. Data scientist Seseorang yang bertugas untuk menganalisis, mengatur hingga mendesain model dari data perusahaan. Bentuk data yang dianalisis biasanya data mentah dalam jumlah yang besar. Hal inilah yang membuat seorang data scientist memerlukan tools dan statisika khususnya machine learning untuk menghasilkan insight baru bagi kepentingan perusahaan. Data engineer Seseorang yang bertugas untuk mengembangkan data yang telah diolah oleh data analyst dan dianalisis data scientist. Pengembangan ini biasanya berbentuk sebuah platform yang berisi data-data perusahaan. Kemudian seorang data engineer juga merancang dan mendesain arsitektur dari database. Sama seperti sarana dan prasarana dalam wujud barang, infrastruktur data perusahaan juga harus dipelihara dengan baik. Bidang Keahlian Data Analyst, Data Scientist, dan Data Engineer Setelah Anda mengetahui definisi dari ketiga ahli data diatas, penting untuk mempelajari bidang-bidang keahlian apa saja dari data analyst, data scientist, dan data engineer. Ini penting untuk menyesuaikannya dengan tugas-tugas yang berkaitan agar lebih relevan. Berikut penjelasan ketiga ahli data tersebut yang sesuai dengan bidang keahliannya antara lain Data analyst Jika ingin menjadi data analyst Anda harus mempelajari bidang keahlian yang sesuai dengan prospek kerjanya. Ini penting agar tugas dan tanggung jawab yang diberikan oleh perusahaan terlaksana dengan baik sesuai prosedur. Bidang keahlian yang harus dimiliki seorang data analyst antara lain menguasai ilmu komputer, pengoperasian Microsoft Excel, SQL hingga Google Analytics serta memiliki pengetahuan tentang bisnis serta membuat rekap laporan data. Data scientist Selanjutnya, agar menjadi data scientist yang profesional Anda harus memahami bidang keahliannya minimal pengetahuan basic. Selain itu disiplin ilmu yang perlu dimiliki yaitu menguasai statistika,b ahasa pemrograman, memahami penggunaan Spreadsheet dan SQL, serta memiliki pengetahuan tentang machine learning dan deep learning. Data engineer Sama seperti dua ahli data di atas, seorang data engineer juga harus memiliki kemampuan bidang ahli guna membantu kinerja dalam mengolah data. Beberapa disiplin ilmu yang diperlukan yaitu menguasai SQL dan database, memiliki pengetahuan mengenai mesin, statistika, middleware hingga hardware, serta bisa menganalisis hadoop. Perbedaan Antara Data Analyst, Data Scientist, dan Data Engineer Meskipun secara garis besar, memiliki peran yang sama dalam sebuah industri maupun bisnis. Tentu ada beberapa perbedaan dalam jobdesk seorang data analyst, data scientist, dan data engineer. Untuk melihat sejauh mana perbedaannya, berikut sudah kami rangkum dibawah ini! Data analyst Perbedaan pertama dimulai dari tugas seorang data analyst yang harus mengumpulkan data berdasarkan permintaan dari perusahaan. Misalnya data dari produk baru yang akan launching bulan depan oleh perusahaan, sebelum diproses lebih lanjut penting untuk menganalisis produk tersebut terkait kelayakan serta target pasar yang sesuai dengan market. Setelah dianalisis data perusahaan akan ditafsirkan sehingga menghasilkan kesimpulan dari berbagai data-data produk. Selanjutnya agar memudahkan untuk presentase, data yang dihasilkan dikemas dalam bentuk visual. Dari segi ouputnya secara sederhana, data analyst memberikan informasi kepada perusahaan berdasarkan dari data-data yang telah dikumpulkan untuk melanjutkan produksi atau tidak. Misal data mengenai penurunan jumlah penjualan sebuah produk, kelanjutan dari produksi ini ditentukan oleh informasi yang disampaikan oleh data analyst. Data scientist Sementara itu data scientist, dilihat dari tugasnya yaitu membuat model statistik lalu menganalisis menggunakan machine learning. Kemudian sebelum data tersebut dipresentasikan kepada petinggi perusahaan, mereka lah yang membuat desain berupa visualisasi data. Ini berguna untuk memudahkan membaca grafik data yang telah selesai diolah. Bukan hanya itu saja, beberapa hal yang berhubungan dengan bisnis perusahaan baik itu produk atau strategi marketingnya menjadi bagian dari tanggung jawab seorang data scientist. Output yang dihasilkan data scientist adalah rekomendasi data product. Seperti pada platform email. Sebuah perusahaan pasti memiliki email resmi mereka, dalam hal ini antara pesan masuk,pesan keluar atau hal penting lainnya bisa masuk secara bersamaan. Ini membuat email akan lebih cepat penuh dan tidak rapi. Nah, data scientist inilah yang akan mengkategorikan mana saja yang pesan masuk,mana yang spam, mana pesan yang sebaiknya dihapus. Data engineer Terakhir perbedaan dari kedua ahli data diatas dengan data engineer dari segi tugasnya adalah memberikan solusi terhadap sistem data perusahaan. Biasanya ini meliputi tentang pembuatan algoritma data, penyimpanan sampai visualisasinya. Bukan hanya itu saja, untuk memastikan sistem perusahaan bekerja secara optimal khususnya seluruh data pipeline adalah tugas dari seorang data engineer. Secara sederhana, tujuan dari data engineer adalah membuat software yang akan digunakan oleh data analyst dan data scientist. Ini sebagai penunjang bagi kedua ahli tersebut untuk menyelesaikan pekerjaan mereka. Ketiga profesi ini memiliki keterkaitan satu sama lain, dimana data analyst tidak akan bisa bekerja jika tidak ada data engineer begitupun data scientist. Pekerjaan para ahli data tersebut akan maksimal jika ketiganya saling mendukung. Sementara itu, memasarkan produk saat ini cenderung menggunakan strategi marketing lewat platform media sosial karena dinilai lebih efektif. Ini tentu berdampak pada output dari seorang data engineer. Misalnya penggunaan instagram, disini postingan harian dari produk akan masuk ke dalam gudang data yang banyak tersebar hingga di beberapa bagian klaster. Data engineer lah yang bekerja untuk menarik postingan harian pada instagram tersebut. Penutup Itulah beberapa perbedaan antara data analyst,data scientist dan data engineer. Penjelasan diatas bermanfaat bagi Anda yang masih bingung membedakan antara ketiga ahli data tersebut. Jika Anda tertarik ingin menjadi salah satu ahli data diatas, pastikan untuk mulai mempelajari ilmu tentang bahasa pemrograman, ilmu statistika bahkan ilmu komputer. Ini berguna sebagai landasan dasar Anda untuk terjun dalam bidang pengolahan hingga analisis data. Meskipun harus menghadapi berbagai macam real data dalam jumlah yang besar setiap hari, belum terlambat untuk mencoba memahaminya. Anda bisa belajar secara otodidak dengan bantuan buku panduan, ikut bootcamp sampai menonton channel video di sosial media. Ketahui juga output yang dihasilkan bagi perusahaan untuk Anda yang ingin bergabung dalam profesi ini ya! Untuk terjun ke bidang baru, Anda tentunya butuh portofolio yang mumpuni. Buatlah sebuah website portofolio online yang menjelaskan proyek-proyek Anda agar lebih mudah ditemukan oleh recruiter. Anda bisa menggunakan WordPress Hosting dari IDCloudHost yang mudah dan cepat digunakan, serta cocok untuk Anda yang ingin membuat portofolio!
Data menjadi komponen penting dalam menentukan suatu keputusan bisnis secara akurat. Dengan data perusahaan mampu menentukan strategi bisnis apa yang ingin di jalankan untuk kedepan. Data adalah sekumpulan informasi yang berbentuk angka, kata-kata, atau simbol-simbol tertentu yang mengandung s fakta didalamnya. Umumnya data yang di hasil kan oleh suatu perusahaan bukan lagi berbentuk beberapa baris data. Data yang dihasilkan perusahaan memiliki volume yang besar atau biasa kita kenal dengan istilah Big Data. Big data adalah kunpulan data data yang memilik volume besar jumlah besar yang dapat berbentuk data yang terstrukyur, semi-terstruktur dan tidak terstruktur yang dapat di olah dengan proses tertentu sehingga menghasikkan analisis bisnis. Analisis data merupakan komponen penting dalam aktivitas business intelligence yang membantu perusahaan menyelesaikan berbagai persoalan bisnis. Krakteristik Big DataVolumeVelocityVarietyPerbedaan Data Analyst, Data Engineer dan Data ScientistData analystData EngineerData Scientist Krakteristik Big Data Ada 3 karakteristik dalam big data atau biasa kita kenal dengan sebutan Three V atau tiga V. Three V adalah komponen volume, velocity dan variety. Berikut adalah penjelasannya. Volume Memiliki arti bahwa suatu big data memiliki ukuran yang besar, ukuran yang besar tersebut memiliki peranan penting dalam analisis. Data yang dapat dikategorikan sebagai big data yaitu dilihat berdasarkan jumlah nya. Volume menjadi aspek penting dalam pengolahan big data. Velocity Velocity memiliki arti bahwa big data berhubungan pada kecepatan data yaitu berupa seberapa cepat data dapat dihasilkan, diproses dan dianalisis untuk menentukan analisis bisnis. Dalam velocity komponen penting yang harus dimiliki big data antara lain pengumpulan data dan transfer yang harus cepat. Kecepatan ini berpengaruh terhadap data yang diterima dan mampu digunakan secara real time. Variety Variety memiliki arti dimana big data memiliki berbagai macam jenis data. Jenis data tradisional umumnya memiliki struktur yang lebih tertata, namun seiring berjalannya waktu bentuk dari big data semakin tidak terstruktur contoh seperti data audio, video, data enkripsi dan lainnya. Di perlukan suatu pengolahan khusus untuk menangi permasalahan struktur big data. Untuk menangani karakteristik data, volume dan variety di perlukan suatu pengolahan khusus. Pengolahan data ini dilakukan oleh seoarang data data analyst, data engineer dan data scientist. Sudahkan anda mengetahui perbedaan ketiga nya? Berikut penjelasannya Perbedaan Data Analyst, Data Engineer dan Data Scientist Meskipun ketiga nya banyak memiliki kemiripan namun ternyata ada perbedaan mendasar antara Data Analyst, Data Engineer dan Data Scientist. Ketahui Perbedaan Data Analyst, Data Engineer dan Data Scientist pada penjelasan berikut Data analyst Seorang analyst data bertanggung jawab untuk menganalisis data dan menyajikannya dengan cara yang bermanfaat untuk membuat keputusan data analyst biasanya melakukan pekerjaan seperti menganalisis data penjualan bagi perusahaan untuk memahami produk mana yang laris dan mana yang tidak. Tools yang banyak digunakan seorang data analyst antara lain seperti Excell dan SQL untuk melakukan ekstrak data dari suatu database, untuk selanjutkan melakukan data visualization menggunakan tools seperti power bi, tableu agar visual data berupa grafik, chart mudah di pahami tim manajemen. Data Engineer Data engineer umum nya berfokus pada infrastruktur dan alat yang digunakan untuk menyimpan, memproses, dan menganalisis big data dengan jumlah besar. Seorang data engineer biasanya melakuka pekerjaan seperti diminta untuk membangun sistem untuk mengumpulkan dan menyimpan datadari sensor di pabrik peralatan. Mereka mungkin juga merancang dan membangun alur yang mampu menangkap data dari sensor secara real-time, menyimpannya dalam database, dan membuat data sensor mampu ditarik untuk analisis oleh divisi lain seperti data analyst. Data Scientist Data Scientist umumnya menggabungkan keterampilan seorang data analyst dan data engineer dengan fokus pada penggunaan statistik dan pembelajaran mesin machine learning. Seoarang data scientist di tuntut untuk menganalisis dan memahami kumpulan data yang bersifat kompleks. Seoarang data scientist biasanya melakukan pekerjaan berups Memprediksi berapa banyak pelanggan yang akan dimiliki . Penulis Meilina Eka A
Saat ini, pekerjaan yang terkait dengan pengolahan informasi dari big data menjadi pekerjaan yang sedang hits dan paling banyak dicari, terutama bagi para fresh graduate. Big data adalah kumpulan data yang sangat besar dan dapat dianalisis secara komputasi. Pekerjaan terkait big data yang sedang digandrungi saat ini antara lain adalah Data Engineer, Data Scientist, dan Data Analyst. Secara umum, ketiga role ini saling membutuhkan satu sama lain. Namun, masih banyak yang belum mengetahui perbedaan antara data engineer, data scientist, dan data analyst pada praktiknya di sebuah perusahaan. Oleh sebab itu, Career Network mencoba merangkum penjelasan terkait bagaimana cara penyimpanan sebuah data dari aplikasi hingga akhirnya data tersebut bisa digunakan untuk berbagai keperluan analisis yang dilakukan oleh ketiga role tersebut melalui ilustrasi pada Gambar 1. Diagram Ilustrasi Mekanisme Penyimpanan Data Sumber Modifikasi dari Youtube Mira's BlackboxMekanisme Penyimpanan DataKetika seorang konsumen membeli sebuah produk berupa barang maupun jasa melalui aplikasi website atau mobile, seluruh data yang berhubungan dengan user, produk, metode pembayaran, transaksi, serta penggunaan device akan tersimpan dalam sebuah database yang disebut production database. Selain itu, data yang berhubungan dengan user behaviour juga bisa didapatkan menggunakan tracker seperti Google Analytics dan umumnya disimpan ditempat yang terpisah dari production database. Kumpulan dari data tersebut tentunya akan sangat banyak, besar, dan beragam, namun tidak semua data dibutuhkan untuk analisis. Data-data tersebut nantinya akan dibersihkan terlebih dahulu melalui proses data cleaning dalam sebuah temporary storage, kemudian diolah kembali baik secara berkala maupun real-time dalam data lake atau data warehouse. Setelah itu, kumpulan data tersebut akan dianalisis sesuai dengan kebutuhan perusahaan. Data lake umumnya menyediakan data yang dapat dianalisis untuk menentukan model machine learning, sedangkan data warehouse cenderung menyediakan data yang dapat dianalisis untuk menghasilkan sebuah dashboard atau Data EngineerData Engineer adalah orang yang bertanggungjawab pada keberlangsungan infrastruktur big data sebelum dianalisis. Singkatnya, seorang data engineer akan terlibat dalam aktivitas yang berhubungan dengan persiapan data. Jika kita ibaratkan dengan Perusahaan Daerah Air Minum PDAM, data engineer adalah seseorang yang mengatur pipa aliran air agar dapat sampai ke kompleks perumahan. Namun pada praktiknya, yang dialirkan oleh seorang data engineer bukanlah air, melainkan sekumpulan data. Berdasarkan ilustrasi pada Gambar 1, peran data engineer ditandai dengan kotak berwarna merah. Data engineer akan memastikan bagaimana caranya data dari production database bisa direplikasi, kemudian dimasukan ke temporary storage, hingga ke data warehouse. Selain itu juga berperan dalam mengolah data dari Google Analytics dan menentukan data storage yang cocok untuk tipe data tertentu. Tanpa seorang data engineer, kemungkinan peran data scientist dan data analyst akan terganggu. Umumnya, latar belakang data engineer berasal dari jurusan IT ataupun Software Engineer yang mahir dalam melakukan coding menggunakan software seperti Data ScientistData Scientist memiliki tugas yang cukup spesifik, yaitu bertanggungjawab dalam mencari solusi dari permasalahan bisnis yang bersifat prediktif. Seorang data scientist akan mengaplikasikan artificial intelegence dan menafsirkan data yang kompleks untuk memecahkan berbagai permasalahan bisnis. Pada Gambar 1, peran data scientist ditandai dengan kotak berwarna kuning. Data yang telah diolah dan dimasukkan ke data lake akan dianalisis lebih lanjut menggunakan teknik machine learning. Selain itu, pekerjaan data scientist akan banyak berhubungan dengan riset, eksperimen, serta data exploration. Latar belakang pendidikan dari seorang data scientist umumnya berasal dari jurusan Data AnalystData Analyst berfokus pada manipulasi dan analisis data untuk menjawab pertanyaan yang bersifat deskriptif. Intinya, seorang data analyst bertanggungjawab dalam menganalisis data numerik dan data historical untuk membantu membuat keputusan yang lebih baik berdasarkan kondisi perusahaan. Kotak berwarna hijau pada Gambar 1 menandakan peran yang dilakukan oleh data analyst saat menganalisis dari data warehouse menjadi sebuah laporan ataupun dashboard. Contohnya, seorang data analyst akan menafsirkan data dengan statistik ketika diminta oleh CEO untuk melihat seberapa besar pendapatan perusahaan selama lima tahun terakhir, atau ketika diminta tim produksi untuk melihat produk yang paling laris dijual di dengan data engineer dan data scientist, latar belakang pendidikan data analyst cenderung lebih beragam. Hal tersebut dikarenakan skillset yang harus dimiliki oleh seorang data analyst bisa dipelajari secara mandiri tanpa harus menempuh pendidikan formal terlebih dahulu. Salah satu skill yang harus dikuasai untuk menjadi Data Analyst adalah Microsoft Excel. Saat ini, Excel menjadi tools awal yang wajib dimiliki oleh seorang data analyst, bahkan beberapa perusahaan hanya menggunakan Excel untuk menganalisa data mereka, mulai dari data processing hingga visualisasi Karir sebagai Data Analyst Bersama Career NetworkKhusus untuk Networkers yang baru mau mengenal Excel dan masih kesulitan untuk memahami materi terkait big data, bisa mulai belajar di Online Training Class Basic Data Analyst with Microsoft Excel yang diadakan oleh Career Network, nih! Tentunya akan dipandu khusus oleh Kak Aryadimas Suprayitno, seorang Microsoft Excel Trainer, dengan benefit dan materi pembelajaran yang cocok untuk Networkers yang ingin berkarir sebagai Data Analyst. Yuk segera daftarkan diri kamu!Gambar 2. Poster Kelas Pelatihan ExcelGambar 3. Benefit Kelas Pelatihan ExcelPenulis Qanita Hana AmiraReferensiSetiawan, I. 2021. Perbedaan Data Engineer, Data Scientist, dan Data Analyst. Widya Accarya Jurnal Kajian Pendidikan FKIP Universitas Dwijendra, 122 306─ Mira's Blackbox Youtube Ngomongin Data Science dan AI